Problem 16.5

(a) Show that $u=g(x+c t)$ is a solution of the wave equation (16.4) for any twice differentiable function $g(\xi)$. (b) Argue clearly that this solution represents a disturbance that travels undistorted to the left.

Solution

Part (a)

The wave equation is given by equation (16.4) on page 684.

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{16.4}
\end{equation*}
$$

Find the derivatives of the given function $u(x, t)=g(x+c t)$ by using the chain rule.

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial}{\partial t} g(x+c t)=g^{\prime}(x+c t) \frac{\partial}{\partial t}(x+c t)=g^{\prime}(x+c t)(c)=c g^{\prime}(x+c t) \\
\frac{\partial^{2} u}{\partial t^{2}} & =\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial t}\right)=\frac{\partial}{\partial t}\left[c g^{\prime}(x+c t)\right]=c g^{\prime \prime}(x+c t) \frac{\partial}{\partial t}(x+c t)=c g^{\prime \prime}(x+c t)(c)=c^{2} g^{\prime \prime}(x+c t) \\
\frac{\partial u}{\partial x} & =\frac{\partial}{\partial x} g(x+c t)=g^{\prime}(x+c t) \frac{\partial}{\partial x}(x+c t)=g^{\prime}(x+c t)(1)=g^{\prime}(x+c t) \\
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial x} g^{\prime}(x+c t)=g^{\prime \prime}(x+c t) \frac{\partial}{\partial x}(x+c t)=g^{\prime \prime}(x+c t)(1)=g^{\prime \prime}(x+c t)
\end{aligned}
$$

Notice that

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} g^{\prime \prime}(x+c t)=c^{2} \frac{\partial^{2} u}{\partial x^{2}} .
$$

Therefore, $u(x, t)=g(x+c t)$ is a solution of the wave equation.

Part (b)

Plugging in $t=0$ gives the initial waveform.

$$
u(x, 0)=g(x)
$$

At $t=1 / c$,

$$
u\left(x, \frac{1}{c}\right)=g(x+1)
$$

the graph is exactly the same but translated to the left by 1 unit. At $t=2 / c$,

$$
u\left(x, \frac{2}{c}\right)=g(x+2)
$$

the graph is exactly the same but translated to the left by 2 units. The more time that passes, the farther to the left the initial wave moves; the wave is said to be moving with speed c.

As an example, consider a travelling Gaussian pulse.

$$
u(x, t)=e^{-(x+c t)^{2}}
$$

Below is a plot of $u(x, t)$ versus x for six times.

