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Problem 16.5

(a) Show that u = g(x + ct) is a solution of the wave equation (16.4) for any twice differentiable
function g(§). (b) Argue clearly that this solution represents a disturbance that travels
undistorted to the left.

Solution

Part (a)
The wave equation is given by equation (16.4) on page 684.
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Find the derivatives of the given function u(x,t) = g(x + ct) by using the chain rule.
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Therefore, u(x,t) = g(z + ct) is a solution of the wave equation.
Part (b)
Plugging in t = 0 gives the initial waveform.

u(z,0) = g(z)

u (x, i) =g(z+1),

the graph is exactly the same but translated to the left by 1 unit. At t = 2/c,

" <$ i) — g(z +2),

the graph is exactly the same but translated to the left by 2 units. The more time that passes,
the farther to the left the initial wave moves; the wave is said to be moving with speed c.

At t =1/c,
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As an example, consider a travelling Gaussian pulse.
’LL(CL‘, t) _ e—(r—l—ct)z

Below is a plot of u(x,t) versus x for six times.
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